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Intro: In vitro cell line models provide a valuable resource to investigate compounds useful in the sys-
temic chemotherapy of cancer. However, the due to the dispersal of the data into several different data-
bases, the utilization of these resources is limited. Here, our aim was to establish a platform enabling the
validation of chemoresistance-associated genes and the ranking of available cell line models.
Methods: We processed four independent databases, DepMap, GDSC1, GDSC2, and CTRP. The gene
expression data was quantile normalized and HUGO gene names were assigned to have unambiguous
identification of the genes. Resistance values were exported for all agents. The correlation between gene
expression and therapy resistance is computed using ROC test.
Results: We combined four datasets with chemosensitivity data of 1562 agents and transcriptome-level
gene expression of 1250 cancer cell lines. We have set up an online tool utilizing this database to corre-
late available cell line sensitivity data and treatment response in a uniform analysis pipeline (www.roc-
plot.com/cells). We employed the established pipeline to by rank genes related to resistance against
afatinib and lapatinib, two inhibitors of the tyrosine-kinase domain of ERBB2.
Discussion: The computational tool is useful 1) to correlate gene expression with resistance, 2) to identify
and rank resistant and sensitive cell lines, and 3) to rank resistance associated genes, cancer hallmarks,
and gene ontology pathways. The platform will be an invaluable support to speed up cancer research
by validating gene-resistance correlations and by selecting the best cell line models for new experiments.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Cancer is considered the second most common cause of death
worldwide with 10 million cancer-related deaths and 19.3 million
new cancer diagnoses according to an estimation in 2021 [1].
Despite improvements of progression-free and overall survival in
the past few years in the treatment of certain tumors, we still
see a significant rate of tumor types in which no improvement
has been made [2]. The majority of anticancer agents are not uni-
versally effective, and they have anti-tumor activities only in dis-
tinct groups of tumors. Besides, the therapeutic response varies
from person to person, which is determined by factors of genetic
and environmental variations. A robust resource enabling the
application of personalized therapies is the determination of gene
expressions levels that are capable of acting as biomarkers to select
patients who will most likely benefit from a given therapy as has
been demonstrated for breast cancer endocrine therapy [3].
New drug development can be challenging due to high costs
and the fact that the mean time from the initial screening to final
approval of the drug can take more than ten years. Approval can be
based on drug repurposing as well – in this case a therapy already
approved for some indication is assessed for another indication [4].
As these drugs already have a regulatory approval, data on their
safety profiles and potential interactions with other drugs are read-
ily available, thus the time and the cost needed to introduce the
therapy with a new indication can be significantly reduced. There
are several drug repurposing candidates with anticancer potential
today. For example, the effects of cardiovascular drugs including
aspirin, ACE inhibitors, and beta blockers are now under investiga-
tion in oncology [5]. Anticancer indications have also been
suggested for psychiatric drugs including valproic acid, phenoth-
iazines, selective serotonin reuptake inhibitors, tricyclic antide-
pressants, and MAO inhibitors [6]. A rational first step in the
discovery and validation of such agents is the preclinical analysis
of their effect in cancer cell lines.
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Cancer cell lines provide clinically useful data by enabling the
experimental investigation and modelling of new treatments and
therapy resistance related factors [7]. In the past decades, several
cell line databases have been established that enable the linking
of pharmaceutical agents to tumor growth inhibition. Initial stud-
ies had panels of cell lines with sensitivity data for a handful of
agents [8]. Large scale anti-tumor drug screening with more than
21,000 agents tested in sixty cell lines was launched by the
National Cancer Institute in the 19900s [9]. The Cancer Cell Line
Encyclopedia (CCLE) project, a cooperation between the Broad
Institute and Novartis, provides the genetic and pharmacological
characteristics of more than 1100 cell lines [10]. The Cancer Ther-
apeutics Response Portal (CTRP) enables access to 860 cell lines
[11] while the Genomics of Drug Sensitivity in Cancer (GDSC) pro-
ject contains data for more than 1000 cell lines and their interac-
tions with more than 500 drugs [12]. The Cancer Dependency
Map (Depmap), a multi-institutional project to map genetic depen-
dencies, provides genetic mapping for more than five hundred cell
lines and resistance data for more than 4,000 agents [13].

In our work we have set three goals. First, we integrated data
from multiple large-scale cell line databases to establish an easy
to use online platform that provides swift access and analysis of
the data in order to uncover relationships between gene expression
and therapeutic response across a large panel of drugs. Second, we
established a ranking of cell lines enabling the identification of the
most robust preclinical model. Third, we validated our approach by
selecting lapatinib and afatinib, two ERBB2 tyrosine kinase domain
inhibitors, which were evaluated in each included dataset, and by
ranking the significant gene expression-based biomarkers.
2. Methods

2.1. Drug screening and gene expression data

For the setup of the database, we collected data from four pub-
licly available drug screening databases. Drug sensitization data of
the Cancer Dependency Map Consortium’s DepMap portal (https://
depmap.org/) were obtained from the PRISM Repurposing 19Q4
secondary screen dose–response dataset [13]. From the Genomics
of Drug Sensitivity in Cancer (GDSC) project [14] both GDSC1 and
GDSC2 drug screening datasets were taken, whereas from the Can-
cer Therapeutics Response Portal (CTRP) the version 2 drug screen-
ing dataset was obtained [15].

DepMap and CTRP drug screening datasets are based on the
CCLE cell lines and for gene expression data the 21Q1 RNAseq data
was used as a source [16]. Read count data were normalized with
the DESeq algorithm, then a quantile and a scaling normalization
method were applied to set the mean gene expression in each cell
line to 1000. Genes with a zero-expression value in more than half
of the cell lines were excluded from the analysis. For the gene
expression of the cell lines in the GDSC drug screening datasets
we obtained RMA normalized Affymetrix HGU-219 microarray
expression matrix, and applied a second scaling normalization
method as above. Pre-processed data were imported into a Post-
greSQL database. For the identification of unambiguous gene
names, we used the HUGO Gene Nomenclature Committee (HGNC)

database (https://www.genenames.org/).
2.2. Treatment response categorization

In the analysis of DepMap and GDSC based projects we used the
reported half-maximal inhibitory concentration (IC50) and the
area under the dose-response curve (AUDRC) values to evaluate
therapeutic response. AUDRC is determined using the dose range
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spanning from the lowest to the highest applied dose for the drug
under investigation. Cases where neither IC50 nor AUDRC was
determined were excluded from the analysis. For each agent, we
defined lower and upper tertile cutoff values based on the IC50
or AUDRC values and cell lines with IC50 or AUDRC values in the
lower tertile were considered as sensitive and those in the upper
tertile were considered as resistant. Cells belonging to the interme-
diate tertile were not considered in the analysis. In the analysis of
the CTRP project only AUDRC values were reported and we used it
to assess therapeutic response with the median and tertile based
method as described above. The difference between IC50 and
AUDRC is summarized in Fig. 1A.

2.3. General statistical methods

The analysis was performed in the R statistical software envi-
ronment (https://www.r-project.org/). Mann-Whitney U test and
receiver operating characteristics (ROC) were computed in order
to compare single gene expression values between sensitive and
resistant samples (Fig. 1B). Spearman rank correlation was applied
to compare published AUDRC values with gene expression. The
statistical significance cutoff was set at p < 0.05.

2.4. Gene signature analysis

To assess the relation of different pathways and cancer hall-
mark genes to therapeutic response, we utilized the lists of KEGG
pathways (https://www.genome.jp/kegg/) and a previously assem-
bled lists of cancer hallmark genes [17]. In these, 712 genes belong-
ing to seven hallmarks and 4,602 genes belonging to 186 KEGG
pathways can be tested per therapeutic agent. Using these genes,
the analysis pipeline was extended with a machine learning com-
putation method to analyze the entire signature. As a first step,
samples are randomly divided into a training (66%) and a test set
(34%). Second, the system selects genes significantly (p < 0.05) cor-
related to resistance using a Mann-Whitney test. Then, the signif-
icant genes are integrated by a random forest classifier into a
single signature. Finally, a ROC analysis is used to evaluate the pre-
dictive effectiveness of this signature. As a result, the list of genes
significant in the signature, the confusion matrix of the test set,
and the overall predictive power of the signature including the
computed accuracy=(TP + TN)/(TP + FN + FP + FN), sensitivity = T
P/(TP + FN), specificity = TN/(TN + FP), and precision = TP/(TP + F
P) values are provided (Fig. 1C).

2.5. Online analysis portal

We extended our previously established ROC plotter tool [18]
with the cell line database. The portal is set up to require the inves-
tigated agent and the biomarker candidate as input. Datasets with
available treatment and expression data as well as the most robust
response data are automatically selected. Using these input param-
eters, the ROC AUC plot is generated for each available setting. Fur-
thermore, the sensitivity across all available cell lines is provided
as a table. In addition to single genes, simultaneous analysis of
multiple genes can be performed by using the mean expression
of the included genes as described above. When analyzing a set
of genes, false discovery rate is computed and provided in the
results page.

2.6. Sample application: Validation of genes related to sensitivity
against lapatinib and afatinib

To validate the robustness of the established database, we
aimed to analyze two selected pharmaceutical agents acting on

https://depmap.org/
https://depmap.org/
https://www.genenames.org/
https://www.r-project.org/
https://www.genome.jp/kegg/


Fig. 1. Overview of the analysis pipeline. Summary of response classification using IC50 and AUDRC (area under the dose response curve) values (A). Primary statistical
methods for single gene analyses (B), and the setup for the machine learning pipeline for gene signature analysis (C).
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an established therapeutic target. For this validation, we selected
the drugs afatinib and lapatinib, both targeting the ERBB2 receptor
according the DrugBank database [19]. This selection was based on
the fact that sensitivity data for these two agents was available in
each of the four included databases. The analysis was performed
using the tertile- based therapeutic response categorization as
described above.
2887
3. Results

3.1. Therapeutic agents in the database

The complete aggregated database contains 1562 compounds
tested in at least one drug screening projects in a minimum of
100 cell lines with reported IC50 or AUDRC values. Of these, there
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are 979 compounds in the DepMap project, 481 compounds in the
CTRP, 345 compounds in the GDSC1, and 192 compounds in the
GDSC2 projects. A total of 286 (18.3%) compounds were tested in
at least two drug screening projects and 41 (2.6%) agents were
tested in all four projects (Fig. 2A).

The database contains a total of 120 FDA approved anticancer
agents. Half of the authorized therapeutic products (n = 61) were
categorized as a chemotherapy with antimetabolites being the
most common (n = 16). A second major group in medicines autho-
rized for oncology are the targeted therapies (n = 52) and the vast
majority (n = 47) of these is involved in the inhibition of a signaling
pathway. A complete list of all available oncology licensed com-
pounds is presented in Table 1.

The database also includes therapeutic agents that are licensed
for non-oncological indications (n = 233) as well as compounds
that are in the experimental and investigational phase (n = 1209).

3.2. Cell lines in the database

Regarding the cell lines in the database, a total of 1250 cell lines
were utilized in at least one source dataset. Of these, there are 835
cell lines in the CTRP, 476 in the DepMap, 987 in the GDSC1, and
809 in the GDSC2 projects. A total of 1009 (80.7%) cell lines were
tested in at least two drug screening projects and 287 (22.9%) cell
lines are available in each source dataset (Fig. 2B). In order to have
an adequate sample size for the analyses, certain tumor subtypes
were grouped together to create a total of 32 subgroups. A com-
plete list of all 1250 cell lines available in the platform is presented
in Supplemental Table S1.

3.3. Gene expression database

The gene expression data table of the CCLE cell lines used by the
CTRP and DepMap projects contains 19,148 unique HGNC identi-
fiers, while the gene expression data table used for the GDSC1
Fig. 2. Venn diagrams comparing the four included datasets, including The number o
used in each included cohort.
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and GDSC2 projects contains 17,399 unique HGNC identifiers.
Genes whose expression was zero in more than half of the tested
cell lines were excluded (n = 2819) from the gene expression table
of the CCLE cell lines resulting in a total of 16,329 genes with
expression values in the database (Fig. 2C).
3.4. Ranking of genes associated with ERBB2 inhibition resistance

Two drugs in the DrugBank database targeting the ERBB2 tyro-
sine kinase domain with a known IC50 or AUDRC values were eval-
uated in all four included datasets, afatinib and lapatinib. The
analysis was performed in each included source cohort separately
by using the integrated database and platform to uncover gene
expression-based markers of resistance in solid tumors.

Of the three ERBB receptors, the expression of the ERBB2 and
ERBB3 genes had a significant association with the therapeutic
response for both drugs regardless of the basis of categorization
(IC50 or AUDRC). The EGFR (ERBB1) gene had no statistically signif-
icant associations in two datasets for lapatinib and in one dataset
for afatinib treatment. Detailed results can be found in Table 2.
When generating the list of cell lines with the highest sensitivity
and resistance, we used both IC50 and AUDRC based classifications.
The lists of top ten cell lines are presented as Table 3.

From the 87 genes included in the ERBB pathway we found 25,
30, 24, and 40 genes with significant association with response to
lapatinib treatment in DepMap, GDSC1, GDSC2, and CTRP datasets,
respectively. The best performing model was observed in the
GDSC1 dataset with an overall accuracy of 0.778 and a ROC AUC
of 0.822 (p = 1.6E-08). Summary table and radar charts based on
the ROC AUC values as well as the ROC plots of the combined mod-
els are presented in Fig. 3 and Table 4. Of the significant variables,
ERBB2 in the DEPMAP (r = �0.44, p = 7.27E-13) and GDSC1
(r = �0.55, p = 9.99E-22) data set, and CBLC in the GDSC2
(r = �0.27, p = 1.22E-09) and CTRP data sets (r = �0.37,
p = 6.89E-18) showed the strongest correlation with the AUDRC
f investigated agents (A), the number of cell lines (B), and the number of genes (C)



Table 1
List of all FDA approved oncology drugs with available in vitro resistance data.

Agent Mechanism of action Target/Classification Category

5-fluorouracil antimetabolite DNA chemotherapy
abemaciclib CDK inhibitor CDK inhibitor targeted
abiraterone antiandrogen hormonal hormonal
afatinib EGFR inhibitor signal transduction inhibitor targeted
alectinib ALK inhibitor signal transduction inhibitor targeted
alpelisib PI3K inhibitor signal transduction inhibitor targeted
axitinib anti-angiogenesis signal transduction inhibitor targeted
azacitidine antimetabolite, hypomethylating agent DNA chemotherapy
belinostat HDAC inhibitor HDAC inhibitor chemotherapy
bendamustine alkylating agent DNA chemotherapy
bexarotene retinoid receptor agonist differentiating agent miscellaneous
bicalutamide antiandrogen hormonal hormonal
binimetinib MEK inhibitor signal transduction inhibitor targeted
bleomycin antitumor antibiotic DNA chemotherapy
bortezomib proteasome inhibitor proteasome inhibitor chemotherapy
bosutinib BCR-ABL inhibitor signal transduction inhibitor targeted
brigatinib ALK inhibitor signal transduction inhibitor targeted
busulfan alkylating agent DNA chemotherapy
cabazitaxel antimicrotubular agent DNA chemotherapy
cabozantinib multiple receptor tyrosine kinase inhibitor signal transduction inhibitor targeted
carfilzomib proteasome inhibitor proteasome inhibitor chemotherapy
carmustine alkylating agent DNA chemotherapy
cetuximab EGFR inhibitor signal transduction inhibitor targeted
chlorambucil alkylating agent DNA chemotherapy
cisplatin platinum analog DNA chemotherapy
cladribine antimetabolite DNA chemotherapy
clofarabine antimetabolite DNA chemotherapy
cobimetinib MEK inhibitor signal transduction inhibitor targeted
crizotinib multiple receptor tyrosine kinase inhibitor signal transduction inhibitor targeted
cyclophosphamide alkylating agent DNA chemotherapy
cytarabine antimetabolite DNA chemotherapy
dabrafenib BRAF inhibitor signal transduction inhibitor targeted
dacarbazine alkylating agent DNA chemotherapy
dacomitinib EGFR inhibitor signal transduction inhibitor targeted
dactinomycin antitumor antibiotic DNA chemotherapy
dasatinib BCR-ABL inhibitor signal transduction inhibitor targeted
daunorubicin antitumor antibiotic DNA chemotherapy
decitabine antimetabolite DNA chemotherapy
docetaxel antimicrotubular agent DNA chemotherapy
doxorubicin antitumor antibiotic DNA chemotherapy
epirubicin antitumor antibiotic DNA chemotherapy
erdafitinib FGFR inhibitor signal transduction inhibitor targeted
erlotinib EGFR inhibitor signal transduction inhibitor targeted
estramustine antimicrotubular agent DNA chemotherapy
etoposide topoisomerase inhibitor DNA chemotherapy
etoposide-phosphate topoisomerase inhibitor DNA chemotherapy
everolimus mTOR inhibitor signal transduction inhibitor targeted
fedratinib JAK inhibitor signal transduction inhibitor chemotherapy
floxuridine antimetabolite DNA chemotherapy
fludarabine antimetabolite DNA chemotherapy
fulvestrant antiestrogen hormonal hormonal
gefitinib EGFR inhibitor signal transduction inhibitor targeted
gemcitabine antimetabolite DNA chemotherapy
hydroxyurea antimetabolite DNA chemotherapy
ibrutinib BTK inhibitor signal transduction inhibitor targeted
idarubicin antitumor antibiotic DNA chemotherapy
idelalisib PI3K inhibitor signal transduction inhibitor targeted
ifosfamide alkylating agent DNA chemotherapy
imatinib BCR-ABL inhibitor signal transduction inhibitor targeted
Irinotecan topoisomerase inhibitor DNA chemotherapy
ixabepilone antimicrotubular agent DNA chemotherapy
ixazomib proteasome inhibitor proteasome inhibitor chemotherapy
lapatinib ERBB inhibitor signal transduction inhibitor targeted
lenalidomide immunomodulatory miscellaneous miscellaneous
lenvatinib multiple receptor tyrosine kinase inhibitor signal transduction inhibitor targeted
mechlorethamine alkylating agent DNA chemotherapy
melphalan alkylating agent DNA chemotherapy
mercaptopurine antimetabolite DNA chemotherapy
methotrexate antimetabolite DNA chemotherapy
midostaurin FLT3 inhibitor signal transduction inhibitor targeted
mitomycin-c antitumor antibiotic DNA chemotherapy
mitoxantrone antitumor antibiotic DNA chemotherapy
nelarabine antimetabolite DNA chemotherapy
neratinib ERBB inhibitor signal transduction inhibitor targeted

(continued on next page)
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Table 1 (continued)

Agent Mechanism of action Target/Classification Category

nilotinib BCR-ABL inhibitor signal transduction inhibitor targeted
niraparib PARP inhibitor signal transduction inhibitor targeted
olaparib PARP inhibitor signal transduction inhibitor targeted
mepesuccinate BCR-ABL inhibitor signal transduction inhibitor targeted
osimertinib EGFR inhibitor signal transduction inhibitor targeted
oxaliplatin platinum analog DNA chemotherapy
paclitaxel antimicrotubular agent DNA chemotherapy
palbociclib CDK inhibitor CDK inhibitor targeted
panobinostat HDAC inhibitor HDAC inhibitor chemotherapy
pazopanib multiple receptor tyrosine kinase inhibitor signal transduction inhibitor targeted
pemetrexed antimetabolite DNA chemotherapy
ponatinib BCR-ABL inhibitor signal transduction inhibitor targeted
pralatrexate antimetabolite DNA chemotherapy
procarbazine alkylating agent DNA chemotherapy
regorafenib multiple receptor tyrosine kinase inhibitor signal transduction inhibitor targeted
ribociclib CDK inhibitor CDK inhibitor targeted
romidepsin HDAC inhibitor HDAC inhibitor chemotherapy
rucaparib PARP inhibitor signal transduction inhibitor targeted
selinexor XPO inhibitor nuclear export inhibitor targeted
selumetinib MEK inhibitor signal transduction inhibitor targeted
sirolimus mTOR inhibitor signal transduction inhibitor targeted
sonidegib hedgehog inhibitor signal transduction inhibitor targeted
sorafenib multiple receptor tyrosine kinase inhibitor signal transduction inhibitor targeted
sunitinib multiple receptor tyrosine kinase inhibitor signal transduction inhibitor targeted
talazoparib PARP inhibitor signal transduction inhibitor targeted
tamoxifen antiestrogen hormonal hormonal
tazemetostat histone lysine methyltransferase inhibitor methyltransferase inhibitor targeted
temozolomide alkylating agent DNA chemotherapy
temsirolimus mTOR inhibitor signal transduction inhibitor targeted
teniposide topoisomerase inhibitor DNA chemotherapy
thioguanine antimetabolite DNA chemotherapy
tipiracil antimetabolite DNA chemotherapy
tirbanibulin microtubule inhibitor DNA chemotherapy
tivozanib anti angiogenesis signal transduction inhibitor targeted
topotecan topoisomerase inhibitor DNA chemotherapy
toremifene antiestrogen hormonal hormonal
trametinib MEK inhibitor signal transduction inhibitor targeted
tucatinib ERBB inhibitor signal transduction inhibitor targeted
valrubicin topoisomerase inhibitor DNA chemotherapy
vandetanib multiple receptor tyrosine kinase inhibitor signal transduction inhibitor targeted
venetoclax BCL2 inhibitor signal transduction inhibitor targeted
vinblastine microtubule inhibitor DNA chemotherapy
vincristine microtubule inhibitor DNA chemotherapy
vinorelbine microtubule inhibitor DNA chemotherapy
vismodegib hedgehog inhibitor signal transduction inhibitor targeted
vorinostat HDAC inhibitor HDAC inhibitor chemotherapy

Table 2
ROC AUC results and Mann-Whitney test p-values of ERBB receptor tyrosine kinase targeting agents using tertile IC50 and AUDRC based categorization of therapeutic response in
each dataset separately.

Response based on Dataset EGFR ERBB2 ERBB3

Afatinib Lapatinib Afatinib Lapatinib Afatinib Lapatinib

lower vs upper tertile of IC50 DEPMAP 0.659 (3.7e-06) 0.616 (1.8e-03) 0.735 (8.6e-12) 0.787 (1.3e-14) 0.672 (5.7e-07) 0.679 (1.1e-07)
GDSC1 0.639 (8.0e-10) 0.741 (2.5e-08) 0.658 (2.4e-12) 0.770 (4.1e-10) 0.587 (1.1e-04) 0.609 (5.5e-03)
GDSC2 n.s. n.s. 0.619 (2.1e-05) 0.577 (7.4e-03) 0.564 (2.3e-02) n.s.
CTRP not applicable not applicable not applicable not applicable not applicable not applicable

lower vs upper tertile of AUDRC DEPMAP 0.679 (2.0e-07) 0.655 (3.2e-05) 0.761 (3.8e-14) 0.797 (2.0e-15) 0.652 (9.7e-06) 0.694 (1.9e-07)
GDSC1 0.716 (1.6e-16) 0.728 (3.9e-06) 0.774 (1.1e-25) 0.784 (9.2e-09) 0.683 (2.3e-12) 0.628 (9.6e-03)
GDSC2 0.592 (8.2e-04) 0.574 (8.5e-03) 0.657 (1.4e-08) 0.617 (3.2e-05) 0.595 (6.2e-04) 0.575 (8.1e-03)
CTRP 0.681 (1.9e-10) 0.614 (7.1e-05) 0.715 (3.8e-14) 0.670 (2.8e-09) 0.659 (2.0e-08) 0.694 (1.2e-11)

n.s.: not significant.
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values. A correlation matrix between drug screening results
(AUDRC and IC50) and gene expression can reveal the influence
of individual genes on each other. In Fig. 4 we show a chart depict-
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ing only significant genes for which the Spearman correlation coef-
ficient (when compared to AUDRC) was below�0.20 or over� 0.20
in the GDSC1 dataset.



Table 3
TOP10 lapatinib treated sensitive (upper panel) and resistant (lower panel) cell
lines from the CTRP database.

Cell line Disease Standardized
AUDRC

NCIN87 Gastric Cancer/Adenocarcinoma 0.178
HCC2218 Breast Cancer/Breast Ductal Carcinoma 0.185
LC1F Non-Small Cell Lung Cancer (NSCLC) 0.213
ZR7530 Breast Cancer/Breast Ductal Carcinoma 0.222
SNU175 Colon adenocarcinoma 0.228
YD10B Head and Neck Cancer/Squamous Cell

Carcinoma
0.236

HCC2935 Non-Small Cell Lung Cancer (NSCLC) 0.251
UBLC1 Bladder carcinoma 0.251
TE617T Rhabdomyosarcoma 0.255
NUGC4 Gastric adenocarcinoma 0.257

Cell line Disease Standardized
AUDRC

CAL120 Breast carcinoma 0.586
MHH-CALL-

4
Acute Lymphoblastic Leukemia (ALL); B-
cell

0.582

BFTC-909 Renal Carcinoma; transitional cell 0.576
KMM1 Multiple myeloma 0.547
BEN Non-Small Cell Lung Cancer (NSCLC) 0.547
HEC265 Endometrial adenocarcinoma 0.546
KARPAS620 Multiple myeloma 0.545
RERFLCAD1 Non-Small Cell Lung Cancer (NSCLC) 0.543
DLD1 Colon adenocarcinoma 0.542
TOV21G Clear cell adenocarcinoma of the ovary 0.538
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4. Discussion

Resistance against systemic therapy is a main limitation of cur-
rent cancer treatment. The utilization of in vitro models can pro-
vide two important advantages: one can explore the off-target
effects of non-oncology drugs related to their potential anticancer
repurposing [20] and one can pinpoint new biomarkers of resis-
tance to established agents. Drug repurposing is a common con-
cept also reflected by the numerous studies included in the
oncology drug repurposing database [21].

The aim of our study was to enable straightforward utilization
of in vitro results by establishing a tool to link gene expression
and drug sensitivity in a cohort of cell lines from four large cohorts.
The complete analysis platform is set up in a way that all available
databases and all available cell lines will be used regardless of the
selected drug. In addition to the analysis of single genes, we also
established a pipeline for the ranking and validation of gene signa-
tures. To enable prompt utilization of the platform we extended
our online predictive biomarker discovery application, which pre-
viously used clinical samples from breast [18], ovarian [22],
glioblastoma [23] and colorectal cancer patients to link gene
expression and therapeutic response.

To assess the role of different pathways and cancer hallmark
genes in therapeutic responses of drugs we have set up a machine
learning-based ranking and validation and utilized this feature to
evaluate genes related to anti-ERBB2 therapy resistance. In this,
genes related to the resistance against two tyrosine kinase inhibi-
tors were investigated, afatinib and lapatinib. Afatinib is an orally
administered irreversible inhibitor of ERBB1 (EGFR), ERBB2, and
ERBB4 first approved in 2013 [24]. The ERBB1 and ERBB2 inhibitor
lapatinib was approved in 2007 after it showed improved outcome
in breast cancer patients whose tumors expressed the ERBB2
(HER2) receptor [25]. Although all four ERBB receptors were impli-
cated in cancer, only ERBB1, ERBB2, and ERBB4 have intracellular
tyrosine kinase domains [26]. Despite high success rate, a signifi-
cant proportion of patients develop resistance against these tyro-
sine kinase inhibitors [27].
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Here, by analyzing in vitro data, we pinpoint the genes with the
highest correlation to resistance against lapatinib and afatinib. In
particular, the strongest genes were ERBB2 itself and Cbl Proto-
Oncogene C (CBLC). Cbl proteins ubiquitinate and downregulate
other tyrosine kinases and regulate ERBB signal transduction
[28]. The expression of CBLC is higher in different tumor types
including lung, pancreatic, breast, and colorectal cancer cells and
has been suggested as a therapeutic target in lung adenocarcinoma
[29]. Our results are strongly supported by a previously described
link between CBLC and resistance against lapatinib [30]. A third
gene among the most significant hits across multiple datasets
was PAK6, a gene encoding a serine/threonine-protein kinase. A
previous study utilizing HER2 positive cell lines identified the
Akt-signaling pathway in cell lines resistant against ERBB2 inhibi-
tors and suggested PAK6 as a biomarker of resistance [31]. Without
further elaboration on individual gens we have to emphasize the
high proportion of overlapping hits among the different analyses.
These results suggest that the resistance mechanisms converge
on a few genes and thus provide a support for the utilization of
predictive biomarkers for anti-ERBB tyrosine kinase domain inhibi-
tor therapy.

Another important observation is the superior performance of
the random-forest derived single signature when compared to
individual genes. The signature had higher AUC value than any
gene with the exception of ERBB2 itself in the DepMap cohort.
The online analysis portal enables the setup of such resistance-
associated signatures for each available drug in an automated
manner – see, for example, a previous signature of resistance
against EGFR inhibitors manually identified in lung cancer [32].

Notable, some analysis for the investigated datasets are already
available at the original repositories. In addition, some previous
tools enable the analysis of multiple cell line cohorts as well. The
GEMiCCL – Gene Expression and Mutations in Cancer Cell Lines
portal was set up to mine and visualize gene expression and muta-
tion data of cell lines [33]. The CellminerCDB is a pharmacoge-
nomic data portal primarily based on the NCI-60 cell lines which
integrates multiple layers of data [34]. The web portal we present
here has a novel unique place among these resources because we
have incorporated more recent datasets, we provide a straightfor-
ward automated selection for the investigated genes and we also
provide a machine learning algorithm for the data analysis.

There are a few limitations to our study. Firstly, only the
reported IC50 and AUDRC valued were used to determine the sen-
sitivity or resistance of a cell line to a particular therapy. Using a
fixed cutoff of tertiles for determining sensitivity/resistance might
be looked upon as artificial. A second limitation is that not all
agents are measured in each cell line, thus, depending on the
applied filtering, some drugs cannot be investigated by the pro-
posed pipeline. A third limitation is the utilization of transcrip-
tomic data only – some of the results may be affected by
mutations in various genes in individual cell lines. For example,
we chose afatinib and lapatinib for our analyses. Afatinib was
approved for metastatic NSCLC tumors with L858R variants or
exon 19 deletion. The cross-tumor analysis of the data for this inhi-
bitor presented in Table 2 could be affected by the proportion of
the cell lines carrying EGFR variants affecting sensitivity to afatinib
and by the proportion of NSCLC cell lines in each dataset. Multiple
ERBB2 mutations may also affect sensitivity or resistance to
lapatinib.

Overall, we have collected and created a unified analysis inter-
face enabling simultaneous mining of four cancer cell line data-
base. The registration-free web application is available at http://
www.rocplot.com/cells. We utilized this platform to rank genes
correlated to resistance against ERBB2 tyrosine kinase domain
inhibitors.



Fig. 3. ROC curves of the random forest models in the test sets and radar chart of the most significant genes correlated with lapatinib resistance in each dataset,
including DepMap (A), GDSC1 (B), GDSC2 (C), and CTRP (D). The values presented in the radar chart are the ROC AUC values for the individual genes.

János Tibor Fekete and Balázs Gy}orffy Computational and Structural Biotechnology Journal 20 (2022) 2885–2894

2892



Table 4
Summary performance of random forest models for lapatinib resistance in the test set in each dataset.

Dataset Number of cell lines Accuracy Kappa Sensitivity Specificity Precision ROC AUC ROC AUC p-value

DepMap 240 0.741 0.482 0.683 0.800 0.778 0.800 6.60E-10
GDSC1 160 0.778 0.450 0.529 0.892 0.692 0.822 1.60E-08
GDSC2 422 0.671 0.344 0.630 0.714 0.697 0.708 9.30E-07
CTRP 409 0.710 0.417 0.730 0.688 0.730 0.798 3.90E-15

Fig. 4. Correlation between genes related to resistance against the ERBB tyrosine kinase inhibitor lapatinib. A correlation matrix between drug screening results (AUDRC
and IC50) and gene expressions using the GDSC1 dataset is shown. The chart includes only significant genes of the KEGG ERBB pathway for which the Spearman correlation
coefficient (when compared to AUDRC) was � -0.20 or � 0.20.
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